Features Based Text Similarity Detection
نویسندگان
چکیده
As the Internet help us cross cultural border by providing different information, plagiarism issue is bound to arise. As a result, plagiarism detection becomes more demanding in overcoming this issue. Different plagiarism detection tools have been developed based on various detection techniques. Nowadays, fingerprint matching technique plays an important role in those detection tools. However, in handling some large content articles, there are some weaknesses in fingerprint matching technique especially in space and time consumption issue. In this paper, we propose a new approach to detect plagiarism which integrates the use of fingerprint matching technique with four key features to assist in the detection process. These proposed features are capable to choose the main point or key sentence in the articles to be compared. Those selected sentence will be undergo the fingerprint matching process in order to detect the similarity between the sentences. Hence, time and space usage for the comparison process is reduced without affecting the effectiveness of the plagiarism detection. —————————— ——————————
منابع مشابه
Plagiarism checker for Persian (PCP) texts using hash-based tree representative fingerprinting
With due respect to the authors’ rights, plagiarism detection, is one of the critical problems in the field of text-mining that many researchers are interested in. This issue is considered as a serious one in high academic institutions. There exist language-free tools which do not yield any reliable results since the special features of every language are ignored in them. Considering the paucit...
متن کاملDetection of Fake Accounts in Social Networks Based on One Class Classification
Detection of fake accounts on social networks is a challenging process. The previous methods in identification of fake accounts have not considered the strength of the users’ communications, hence reducing their efficiency. In this work, we are going to present a detection method based on the users’ similarities considering the network communications of the users. In the first step, similarity ...
متن کاملDocument Retrieval Using SIFT Image Features
This paper describes a new approach to document classification based on visual features alone. Text-based retrieval systems perform poorly on noisy text. We have conducted series of experiments using cosine distance as our similarity measure, selecting varying numbers local interest points per page, and varying numbers of nearest neighbour points in the similarity calculations. We have found th...
متن کاملA Novel Architecture for Detecting Phishing Webpages using Cost-based Feature Selection
Phishing is one of the luring techniques used to exploit personal information. A phishing webpage detection system (PWDS) extracts features to determine whether it is a phishing webpage or not. Selecting appropriate features improves the performance of PWDS. Performance criteria are detection accuracy and system response time. The major time consumed by PWDS arises from feature extraction that ...
متن کاملA Paraphrase and Semantic Similarity Detection System for User Generated Short-Text Content on Microblogs
Existing systems deliver high accuracy and F1-scores for detecting paraphrase and semantic similarity on traditional clean-text corpus. For instance, on the clean-text Microsoft Paraphrase benchmark database, the existing systems attain an accuracy as high as 0.8596. However, existing systems for detecting paraphrases and semantic similarity on user-generated short-text content on microblogs su...
متن کاملEmotion Detection in Persian Text; A Machine Learning Model
This study aimed to develop a computational model for recognition of emotion in Persian text as a supervised machine learning problem. We considered Pluthchik emotion model as supervised learning criteria and Support Vector Machine (SVM) as baseline classifier. We also used NRC lexicon and contextual features as training data and components of the model. One hundred selected texts including pol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1001.3487 شماره
صفحات -
تاریخ انتشار 2010